HOME     STORE     BLOG     SCHEMATICS     TUTORIALS     DOWNLOADS     CONTACT
  Electronic Schematics
FM Transmitters
PLL Synthesizers
Stereo Encoders and Decoders
Antennas
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test and Measurement
PIC / ATMEL / AVR
USB Circuits
Telephone Related
LED
Miscellaneous Circuits
Stepper Motors
 Schematics  >> 

Page 2 of 8:  1 2 3  4  5  6  7  8

12 Volt 30 Amp PSU
Using a single 7812 IC voltage regulator and multiple outboard pass transistors, this power supply can deliver output load currents of up to 30 amps. This circuit is a fine example of Kirchoff's current and voltage laws. To summarise, the sum of the currents entering a junction, must equal the current leaving the junction, and the voltages around a loop must equal zero. For example, in the diagram above, the input voltage is 24 volts.


12V 2A Linear Power Supply
As you might expect, I have several power supplies that have more than enough capacity to power my new KN-Q7 transceiver. However, my largest power supply is normally connected to my main 100W PEP SSB transceiver. It is capable of 20A and more, but it’s not easy to connect other equipment to it. I also have a smaller 8A power supply, but I use this to power some other VHF and UHF transceivers. In short, I wanted a simple power supply which I could dedicate to this new transceiver.


12V Dual Power Supply
12V dual power supply has symmetrical voltage output +12V and -12V with limited current to 100mA. It has been built to power three OPA627 opamps of Audio DAC I am building with PCM1792 & PCM1794 chips. Circuit has on the primary side only fuse. I couldn't find smaller than 50mA. We can connect power cord directly to the X1 connector or via power switch on the chassis. On the secondary side of transformer are connected two fuses 100mA and after them is bridge rectifier. For filtering of rectified voltage there are C1 and C2. Next are positive and negative voltage regulators 78L12 and 79L12 with decoupling capacitors C3 to C6 close to regulators. Next are small filter capacitors and also signaling LEDs connected via resistors. Output voltages are connected to 3 pin connector. For signaling of presence of voltage is enough only one LED. We can also use 2 pin connectors for LED connecting.


12V Power Supply - 30A
This is high current 12V power supply. Power supply uses LM7812 IC and can deliver up to 30A to the load by the help of the TIP2955 pass transistors. Each transistor can handle up to 5A and six of them result an total output current of 30A. You can increase or reduce the number of TIP2955s to get higher or lower current outputs. In this design the IC delivers about 800mA. A 1 amp fuse is connected after the LM7812 to protect the IC against high current transients. The transistors and the 12V regulator IC both require adequate heatsinking. When the load current is high, the power dissipation of each transistor also increases so excess heat may cause the transistors to fail. Then you will need a very large heatsink or fan cooling. 100Ω resistors are used for stability and prevent current swamping as the tolerances of dc current gain will be different for each transistor. The bridge rectifier diodes must be capable of passing at least 100 amps.


13.8V 10A Power Supply
As is commonly the case, this supply was born of necessity. There is absolutely nothing special about the circuit, except that as shown, it is quite capable of up to 20 Amps intermittently or 10A continuous. Simply use a bigger transformer, bridge rectifier and more capacitors and output transistors to get more current. The basic circuit should be good for up to 100A or so, using a 5A TO3 regulator IC, but it can obviously be increased further (if you really do need a 500A supply!).


13.8V 20A Linear Power Supply
Linear power supplies for communication equipment are among the most commonly built electronic projects. Almost every technically inclined radio amateur has built at least one. But unfortunately most designs, even those published in well respected books, are unnecessarily complicated, or have some specific drawbacks. The design presented here is a little bit unusual in its arrangement, but offers some advantages over the usual designs that I will explain in the following paragraphs.


13.8V 40A Switching Power Supply
Amateur radio has been somewhat slow to accept switching power supplies for powering communication equipment. This is a pity, because "switchers", as they are often called, offer very attractive features, like small size, low weight, high efficiency, and low heating. True, they are generally more complicated than linear power supplies, but this is easily compensated by the fact that they can be built for a lower cost. Some early switchers produced an objectionable amount of RF noise, bringing the whole switching technology into bad reputation. But by proper design techniques and careful EMI filtering it is possible to build very quiet switchers. In this article I will describe the construction of a switching power supply designed to power a complete ham station, with several radios and accessories. This power supply produces 13.8V regulated to better than 1%, at a continuous load current of up to 40A. It has current limiting, making it appropriate for direct connection to a 12V backup battery. If the current limit potentiometer is turned up, the power supply can deliver up to 60A on an intermittent basis, while maintaining regulation. No minimum load is required. The ripple on the output is about 20mV, and the efficiency is 88%. A cooling fan operates depending on the average current drawn, and a tricolor LED tells you if the voltage is normal, too high or too low. It produces no detectable RF noise at any frequency higher than the main switching frequency of 50kHz (I checked it with an antenna wire looped around the operating power supply, tuning my TS450 from 30kHz to 40MHz). And you get all this in a box that measures just 306 x 150 x 130mm, including all projections, and weighs only 2.8kg!


13.8V, 40A Switching Power Supply
Amateur radio has been somewhat slow to accept switching power supplies for powering communication equipment. This is a pity, because "switchers", as they are often called, offer very attractive features, like small size, low weight, high efficiency, and low heating. True, they are generally more complicated than linear power supplies, but this is easily compensated by the fact that they can be built for a lower cost. Some early switchers produced an objectionable amount of RF noise, bringing the whole switching technology into bad reputation. But by proper design techniques and careful EMI filtering it is possible to build very quiet switchers.


15V / 28V 4A Transmitter Power Supply
Power supply used for professional FM broadcasting transmitter.


3.3V and 5V Power Supply
I normally use a USB port as power supply for my projects but some ICs need 3.3V instead of 5V. Therefore I decided to build this small dual power supply. Power supply uses two low dropout voltage regulators that provide up to 800mA of output current and come in TO-220 package. LD1117V33 is used for 3.3V and LD1117V50 for 5V. Input voltage is 6V-15V and both regulators can be switched on/off individually.


Page 2 of 8:  1 2 3  4  5  6  7  8


Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
 
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
 
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.
 

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
 
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
 
  Latest Schematics
FM Transmitter with Booster
TDA7000 FM Radio Receiver with LM386 Amplifier
BA1404 Stereo FM Transmitter with Booster
Portable Variable Bench Power Supply 1-32V 0-5A
1 Watt FM Transmitter Booster
Arduino DCC Decoder
Simplest FM Receiver
7W FM Transmitter
Simple Stereo FM Transmitter using an AVR Microcontroller
Stereo FM Receiver
Simple DIY FM Transmitter
50W Power Amplifier with LM3886
BLF147 150W VHF Amplifier
Fully Adjustable Power Supply
Stereo FM Transmitter with BA1404 IC
High Performance Stereo Audio Amplifier using LM3886
1Km FM Transmitter with UA741 Opamp
Easy Crystal Locked FM Transmitter
Adjustable Delay Circuit
DIY Adjustable Bench Power Supply
BA1404 FM Stereo Transmitter with Amplifier
LM350 3A Adjustable Voltage Regulator
1 Watt FM Amplifier
TDA2050 Stereo Audio Power Amplifier
DIY Walkie Talkie
5km FM Transmitter
Bench Lab Power Supply 0-50V 0-5A
Tiny FM Transmitter
3V One Transistor FM Transmitter
FM Music Transmitter

Electronics-DIY.com © 2002-2024. All Rights Reserved.