3 Channel IR Remote Control
3 Channel IR Remote Control


3 Channel IR Remote Control


This project is a 3-channel IR remote control with 3 output relay and easy to build. Features: CPU PIC12F629 at 4MHz crystal for Tx/Rx, 3 channel output relay, The Tx use sleep mode for saving battery power, Use Phillips RC5 protocol, distance more than 7 m, Easy circuit to build and assembly and small amount of components. Uses RC5 protocol which is probably the most used by hobbyists, probably because the wide availability of cheap remote controls and easy to understand.

3 Channel IR Remote Control

This project is a 3-channel IR remote control with 3 output
relay and easy to build.

CPU PIC12F629 at 4MHz crystal for Tx/Rx
3 channel output relay
The Tx use sleep mode for saving battery power
Use Phillips RC5 protocal
distance more than 7 m.
Easy circuit to build and assembly
small components

Basic RC5 protocal

The RC5 is probably the most used by hobbyists, probably because the wide availability of cheap remote controls and
easy to understand.

2 start bit always "1"
1 toggle bit but this project not use and always "0"
5 bit address and 6 bit command length
Bi-phase coding (aka Manchester coding)
Carrier frequency of 36kHz 25-50% duty cycle
Bit time period about 1.67 ms
Developt by Philips

The protocol uses bi-phase modulation (or Manchester code) of
a 36kHz IR carrier frequency. All bits are of equal length of about 1.67 ms as follows figure.

In figure 2,the first two pulses are the start pulses, and are both logical "1". (St1 and St2)

The 3d bit is a toggle bit. This bit is inverted every time a key is released and pressed again. But this project not use this bit
and always "0" (Ctrl)

The next 5 bits represent the IR device address, which is sent with MSB first. (S0-S4)

The next 6 bits is command and sent with MSB first too.(C0-C5)

Note that a RC5 frame consists of a total of 14 bits so the total
time is about 23 mS

RC5 detecting

When the detect subroutine is called, it first waits for a start bit. The length of the low part of the first start bit is measured. If the low pulse of first start bit is longer than 1.020 ms or less then 800 uS the routine returns indicating error or no
command received.

Figure 4. Synchronizing and Sampling of the Data

The measurement of the start bit is used to calculate two reference times, ref1 and ref2, which are used when sampling the data line. The program uses the edge in the middle of
every bit to synchronize the timing. 3/4 bit length after this
edge, the line is sampled. This is in the middle of the first half
of the next bit (see Figure 4).The state for each bit is stored and the routine waits for the middle edge.

Tx schematic

The TX use 8 pin PIC devices, here is PIC12F629 run at 4 MHz
crystal. Actualy, this device has 4MHz RC internal oscillator but
not suitible for use with the project that need cirtical time as
remote control.The 36KHz carrier and information bit generated by IC1.For saving power when use with battery powered we
need to use this device in sleep mode when any keys not
pressed and draw current <1 mA at 4MHz, 5.5V .

Example how to wake-up from sleep mode when key pressed.

main : SLEEP
GOTO main

Rx schematic

The IR was recieved from Tx will demodulated by IC2 that is IR receiver Modules for Remote Control Systems.In this project I
use TSOP4836 from Vishay Semiconductors that is one of TSOP48XX series. After IR demodulated it was decoded the protocal by IC1 then turn on/off appropiate channel.The out out of IC1 is toggle every time when Tx send the same command to Rx.You may be change the output drive circuit for
suitible with your load.The pin 3 of IC1 must pull-up to vcc with
R10K becuase it is not has weak-up internal pull-up.

Here is an example application for reverse direction of dc motor

Note : don't for got to connect diode cross relay

3 Channel IR Remote Control

3 Channel IR Remote Control

3 Channel IR Remote Control

Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.

Electronics-DIY.com © 2002-2024. All Rights Reserved.