QUAD 2-INPUT SCHMITT TRIGGER NAND GATE

The SN54/74LS132 contains four 2-Input NAND Gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitterfree output signals. Additionally, they have greater noise margin than conventional NAND Gates.

Each circuit contains a 2-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as one input remains at a more positive voltage than $\mathrm{V}_{\mathrm{T}_{+}}$(MAX), the gate will respond to the transitions of the other input as shown in Figure 1.

LOGIC AND CONNECTION DIAGRAM

 DIP (TOP VIEW)

QUAD 2-INPUT

 SCHMITT TRIGGER NAND GATE
LOW POWER SCHOTTKY

ORDERING INFORMATION

```
SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
SN74LSXXXD SOIC
```


Figure 1. VIN versus VOUT Transfer Function

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
I_{OH}	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions
			Min	Typ	Max		
$\mathrm{V}_{\mathrm{T}_{+}}$	Positive-Going Threshold Voltage		1.5		2.0	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {T- }}$	Negative-Going Threshold Voltage		0.6		1.1	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\mathrm{T}-}}$	Hysteresis		0.4	0.8		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	54	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$
		74	2.7	3.4			
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
		74		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
${ }^{1}{ }^{+}$	Input Current at Positive-Going Threshold			-0.14		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}_{+}}$
${ }^{1}{ }^{\text {- }}$	Input Current at Negative-Going Threshold			-0.18		mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{T}-}$
${ }_{\text {IIH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
Ios	Output Short Circuit Current (Note 1)		-20		-100	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current Total, Output HIGH Total, Output LOW			5.9	11	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
				8.2	14	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tPLH	Turn-Off Delay, Input to Output			22	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tPHL	Turn-On Delay, Input to Output			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Figure 2. AC Waveforms

Figure 3. Threshold Voltage and Hysteresis versus Power Supply Voltage

Figure 4. Threshold Voltage and Hysteresis versus Temperature

